Deficiency of Transcription Factor Brn4 Disrupts Cochlear Gap Junction Plaques in a Model of DFN3 Non-Syndromic Deafness

نویسندگان

  • Yoshinobu Kidokoro
  • Keiko Karasawa
  • Osamu Minowa
  • Yoshinobu Sugitani
  • Tetsuo Noda
  • Katsuhisa Ikeda
  • Kazusaku Kamiya
  • Eliana Scemes
چکیده

Brn4, which encodes a POU transcription factor, is the gene responsible for DFN3, an X chromosome-linked, non-syndromic type of hearing loss. Brn4-deficient mice have a low endocochlear potential (EP), hearing loss, and ultrastructural alterations in spiral ligament fibrocytes, however the molecular pathology through which Brn4 deficiency causes low EP is still unclear. Mutations in the Gjb2 and Gjb6 genes encoding the gap junction proteins connexin26 (Cx26) and connexin30 (Cx30) genes, respectively, which encode gap junction proteins and are expressed in cochlear fibrocytes and non-sensory epithelial cells (i.e., cochlear supporting cells) to maintain the proper EP, are responsible for hereditary sensorineural deafness. It has been hypothesized that the gap junction in the cochlea provides an intercellular passage by which K+ is transported to maintain the EP at the high level necessary for sensory hair cell excitation. Here we analyzed the formation of gap junction plaques in cochlear supporting cells of Brn4-deficient mice at different stages by confocal microscopy and three-dimensional graphic reconstructions. Gap junctions from control mice, which are composed mainly of Cx26 and Cx30, formed linear plaques along the cell-cell junction sites with adjacent cells. These plaques formed pentagonal or hexagonal outlines of the normal inner sulcus cells and border cells. Gap junction plaques in Brn4-deficient mice did not, however, show the normal linear structure but instead formed small spots around the cell-cell junction sites. Gap junction lengths were significantly shorter, and the level of Cx26 and Cx30 was significantly reduced in Brn4-deficient mice compared with littermate controls. Thus the Brn4 mutation affected the assembly and localization of gap junction proteins at the cell borders of cochlear supporting cells, suggesting that Brn4 substantially contributes to cochlear gap junction properties to maintain the proper EP in cochleae, similar to connexin-related deafness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping and cloning hereditary deafness genes.

In the past two years, considerable progress has been made in the mapping and cloning of human deafness genes. Highlights are the chromosomal localization of at least five genes for autosomal forms of non-syndromic deafness and, more recently, the cloning of an X-linked deafness gene, DFN3, and the Usher syndrome type IB gene. This last gene encodes a myosin-like protein and was identified as t...

متن کامل

Assembly of the cochlear gap junction macromolecular complex requires connexin 26.

Hereditary deafness affects approximately 1 in 2,000 children. Mutations in the gene encoding the cochlear gap junction protein connexin 26 (CX26) cause prelingual, nonsyndromic deafness and are responsible for as many as 50% of hereditary deafness cases in certain populations. Connexin-associated deafness is thought to be the result of defective development of auditory sensory epithelium due t...

متن کامل

In Vitro Models of GJB2-Related Hearing Loss Recapitulate Ca2+ Transients via a Gap Junction Characteristic of Developing Cochlea

Mutation of the Gap Junction Beta 2 gene (GJB2) encoding connexin 26 (CX26) is the most frequent cause of hereditary deafness worldwide and accounts for up to 50% of non-syndromic sensorineural hearing loss cases in some populations. Therefore, cochlear CX26-gap junction plaque (GJP)-forming cells such as cochlear supporting cells are thought to be the most important therapeutic target for the ...

متن کامل

Evaluation of GJB2 and GJB6 Mutations in Patients Afflicted with Non-syndromic Hearing Loss

Background Non-syndromic hearing loss (NSHL) is assumed as one of the highly prevalent congenital defects in the world. In this regard, gap junction protein beta 2(GJB2), and gap junction protein beta 6(GJB6) mutations are considered as the leading congenital causes of deafness. The present study aimed to assess the prevalence of GJB2 and GJB6 mutations in NSHL cases. Materials and Methods This...

متن کامل

P 129: The Role of Overexpression Transcription Factor BRN 4 in Multiple Sclerosis

Adult neurogenesis is a process of producing nerve cells from their progenitor that occurs in some areas in the brain such as the hypothalamus. Low activity in this area plays a role in neural degeneration and diseases such as multiple sclerosis, epilepsy and depression. MS is a neurodegenerative disease with a permanent disability that the main reason for it is axonal degeneration and neuronal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014